on the quadratic support of strongly convex functions

نویسندگان

s. abbaszadeh

m eshaghi gordji

چکیده

in this paper, we first introduce the notion of $c$-affine functions for $c> 0$.then we deal with some properties of strongly convex functions in real inner product spaces by using a quadratic support function at each point which is $c$-affine. moreover, a hyers–-ulam stability result for strongly convex functions is shown.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the quadratic support of strongly convex functions

In this paper, we first introduce the notion of $c$-affine functions for $c> 0$. Then we deal with some properties of strongly convex functions in real inner product spaces by using a quadratic support function at each point which is $c$-affine. Moreover, a Hyers–-Ulam stability result for strongly convex functions is shown.

متن کامل

ON STRONGLY h-CONVEX FUNCTIONS

We introduce the notion of strongly h-convex functions (defined on a normed space) and present some properties and representations of such functions. We obtain a characterization of inner product spaces involving the notion of strongly h-convex functions. Finally, a Hermite–Hadamard–type inequality for strongly h-convex functions is given.

متن کامل

Optimization of Smooth and Strongly Convex Functions

A. Proof of Lemma 1 We need the following lemma that characterizes the property of the extra-gradient descent. Lemma 8 (Lemma 3.1 in (Nemirovski, 2005)). Let Z be a convex compact set in Euclidean space E with inner product 〈·, ·〉, let ‖ · ‖ be a norm on E and ‖ · ‖∗ be its dual norm, and let ω(z) : Z 7→ R be a α-strongly convex function with respect to ‖ · ‖. The Bregman distance associated wi...

متن کامل

Jensen’s Operator Inequality for Strongly Convex Functions

We give a Jensen’s operator inequality for strongly convex functions. As a corollary, we improve Hölder-McCarthy inequality under suitable conditions. More precisely we show that if Sp (A) ⊂ I ⊆ (1,∞), then 〈Ax, x〉 r ≤ 〈Ax, x〉 − r − r 2 (

متن کامل

A remark on multiobjective stochastic optimization via strongly convex functions

Many economic and financial applications lead (from the mathematical point of view) to deterministic optimization problems depending on a probability measure. These problems can be static (one stage), dynamic with finite (multistage) or infinite horizon, single objective or multiobjective.We focus on one-stage case in multiobjective setting. Evidently, well known results from the deterministic ...

متن کامل

Computing the conjugate of convex piecewise linear-quadratic bivariate functions

We present a new algorithm to compute the Legendre–Fenchel conjugate of convex piecewise linear-quadratic (PLQ) bivariate functions. The algorithm stores a function using a (primal) planar arrangement. It then computes the (dual) arrangement associated with the conjugate by looping through vertices, edges, and faces in the primal arrangement and building associated dual vertices, edges, and fac...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید


عنوان ژورنال:
international journal of nonlinear analysis and applications

ناشر: semnan university

ISSN

دوره 7

شماره 1 2015

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023